

Vincent Van Denberghe

Performance and Architectural Study of

Direct3D 11 and Direct3D 12
Graduation Work 2022-2023

Digital Arts and Entertainment

Howest.be

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 1/17

CONTENTS

ABSTRACT .. 2

INTRODUCTION ... 3

RELATED WORK ... 3

1. Design ... 3

1.1. API .. 3

1.2. Scenes .. 4

1.3. Classes .. 4

1. Benchmarking ... 4

CASE STUDY ... 5

1. Introduction .. 5

2. Setup ... 6

3. Project Setup .. 6

4. DirectX Initialization ... 7

4.1. DirectX 11 .. 7

4.2. DirectX 12 .. 7

5. Class Initialization ... 8

5.1. DirectX 11 .. 8

5.2. DirectX 12 .. 8

6. Game Loop ... 9

6.1. DirectX 11 .. 9

6.2. DirectX 12 .. 10

7. GPU Instancing ... 10

8. Shaders ... 10

9. Performance Comparison ... 11

DISCUSSION ... 12

FUTURE WORK ... 12

BIBLIOGRAPHY ... 13

APPENDICES ... 16

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 2/17

ABSTRACT

This graduation work consists of a project that renders the same scene in DirectX 11 and DirectX 12 using GPU

instancing. This paper entails to compare the two versions of the graphics API, detailing the architectural

differences in a simple rasterized scene and analyzing the performance differences between the two versions.

DirectX 12 offers a lot more low-level control than its predecessor DirectX 11. However, the introduction of the

command list/queue, descriptor heaps, pipeline state objects, resource barriers increase the barrier of entry for

DirectX 12, making it difficult to start without prior knowledge of the DirectX render pipeline. Comparison of the

two APIs’ performance in the scene chosen is very similar, but the differences are plenty when looking at the

underlying code and the difficulties of modern-day DirectX 12 video games are not that apparent.

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 3/17

INTRODUCTION

DirectX 11 has been the standard for graphics rendering in video games for many years. However, with the recent

rise of DirectX 12, developers are now presented with a new set of tools that promise greater control and support

for advanced features such as hardware ray tracing and variable rate shading.

The arrival of the 9th generation of video game consoles, such as the PlayStation 5 and Xbox Series, has increased

the demand for better graphics performance. DirectX 12 offers several advantages over its predecessor, including

improved CPU utilization and support for low-level hardware abstraction. However, the transition to the new API

has not always been smooth, as demonstrated by games such as Borderlands 3 and Final Fantasy 7 Remake, which

have experienced performance issues when using DirectX 12.

The goal of this paper is to explore the capabilities of DirectX 12 and to create a rasterizer using the new API. The

differences between DirectX 11 and DirectX 12 will be benchmarked and the performance and code architecture of

both versions will be analyzed. The challenges of implementing DirectX 12 in game engines will be discussed, as

well as the potential role of D3D11On12 in porting existing games to the new API.

DirectX 12 offers significant improvements over DirectX 11, but the transition to the new API is not without

challenges. By comparing the performance and code architecture of the two versions, we can better understand

the advantages and disadvantages of DirectX 12.

RELATED WORK

The differences between DirectX 11 and DirectX 12 are numerous but can be boiled down to a simple topic:

increasing performance by handling agency back to the user. What sets the 2 versions of the API apart is that

DirectX 12 provides a lower level of hardware integration than previous version of DirectX, enabling significant

improvements to multi-core CPU scaling for video game titles written using the API.

For example, where DirectX 11 has automatic memory management, DirectX 12 titles are responsible for their own

memory management. Furthermore, DirectX 12 makes use of command queues and lists, descriptor tables and

pipeline state objects to reduce GPU overhead1.

1. DESIGN

1.1. API

This project will use the Win32 API, while following the DirectXTK112 and DirectXTK123 (DirectX 12 Tool Kit)

tutorials using its Direct3D Game Visual Studio Templates4. This is a public series of tutorials created by Microsoft.

These tutorials for designing this project’s DirectX code will be followed, including their best practices.

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 4/17

1.2. SCENES

The application will consist of a single scene with meshes. Using GPU instancing5,6 to render the same object a

great number of times, the goal is to stress the GPU as much as possible while eliminating the CPU bottleneck, in

the hopes of getting clear performance readings. DirectX 12 mesh shading will not be used, due to time constraints

as well as to maintain feature parity between the two API versions.

1.3. CLASSES

The code will be written in a way that facilitates comparisons between similar aspects of the rasterizer pipeline.

The initialization of both API versions is naturally different, so initialization is split up into two classes that inherit

from the same base class, and the sub classes then implement/override the base class functions. This will make

comparisons much easier, as one-to-one comparisons between the two APIs become possible.

1. BENCHMARKING

At runtime, FPS will be logged and saved to a CSV file, which can easily be read using Microsoft Excel. This CSV file

will contain a timestamp, current FPS and the currently used graphics API. Performance will only be logged like this

once every second.

A second goal of this paper is to try to pinpoint what can go wrong when creating games with DirectX 12, and why

games tend to struggle when using DirectX 12. A third version, using the D3D11On127 API, a mechanism by which

developers can use D3D11 interfaces and objects to drive the D3D12 API, might provide an interesting middle-

ground between the two graphics APIs. However related, this specific method will not be implemented in this

project.

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 5/17

CASE STUDY

1. INTRODUCTION

The scene used was inspired by Microsoft’s Basic Instancing scenes8 for DirectX 11 and DirectX 12.

The classes used in the DirectXTK (DirectX Tool Kit)2,3 are not representative of actual DirectX programming, as

they provide abstractions of DirectX functions. The Simple Instancing scene found on Microsoft’s

XBoxUWPSamples8 GitHub page used GPU instancing to render multiple instances of a mesh, using DirectXTK

functions only for assigning buffer constants in DirectX 12, which was excused as the abstraction was not pertinent

to this paper’s subject.

Some changes were made compared to the original scene: the cube was swapped out for a Stanford Dragon

model, taken from the Stanford 3D Scanning Repository9, and the initialization of the vertex buffer for DirectX 12

was updated to use an additional upload buffer.

Figure 1. Image of program scene

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 6/17

2. SETUP

CPU: AMD Ryzen 7 4800H 16 GB memory

GPU: Nvidia Geforce RTX 2060M 4GB VRAM

OS: Windows 11 Home

IDE: Visual Studio 2022 Enterprise

Additional debugging software: PIX for Windows (for DirectX 12 graphics debugging)

App window resolution: 800 x 600

3. PROJECT SETUP

This project uses the Win32 API with the “Direct3D12/11 Win32 Game DR” Visual Studio template downloaded4

following the instructions on the DirectX TK GitHub page. One of the reasons this template was chosen, was that it

came with a preconfigured Game class, implemented with Win32. Another reason this template was chosen, were

the pre-initialized DirectX resources in the form of the DeviceResources. To facilitate future code comparison, a

class structure was implemented as shown in the UML diagram below.

BaseGame

m_Window : HWND
m_OutputWidth : int
m_OutputHeight : int
m_Timer : StepTimer

+ Initialize()
+ Tick()

-Update()
-Render()
-Clear()

-CreateDeviceDependentResources()
-CreateWindowSizeDependentResources()

GameDX11

-m_DeviceResources : DeviceResourcesDX11

+ Initialize()
+ Tick()

-Update()
-Render()
-Clear()

-CreateDeviceDependentResources()
-CreateWindowSizeDependentResources()

GameDX12

-m_DeviceResources : DeviceResourcesDX12

+ Initialize()
+ Tick()

-Update()
-Render()
-Clear()

-CreateDeviceDependentResources()
-CreateWindowSizeDependentResources()

To separate the renderers from each other, a variable is stored in a global namespace. Using a menu toggle

“Render Mode” you can select the desired render mode at any time, releasing the current API’s resources, and

initializing the selected ones.

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 7/17

Figure 2. Render mode selection

Inside of the Device Resources files, all DirectX resources were stored inside ComPtr’s instead of unique or shared

pointers of the C++ Standard Library. As ComPtr’s are designed to work with interfaces, not dynamically allocated

memory10,11, they are ideal when working with DirectX resources.

4. DIRECTX INITIALIZATION

While initializing DirectX, the first differences between the two version of the graphics API come to light. In the

Device Resources classes, initialization of DirectX resources is split up between two different functions:

CreateDeviceResources and CreateWindowSizeDependantResources. The device, device context, DXGI Factory and

several other resources are initialized in the former. The swap chain, render target and depth stencil view are

initialized in the latter, as the window is resizable, and so these resources would need to be recreated.

4.1. DIRECTX 11

In DirectX11, the first thing to do is setup the DXGIFactory212, then call D3D11CreateDevice to initialize the device13

and device context14. These respectively represent the display adapter, used to create resources and to enumerate

the capabilities of the display adapter, and the circumstance/setting in which the device is used. The next step is to

create the swap chain and link the DXGIFactory to the application window. Then, the render target, depth stencil

and depth stencil view are initialized. Lastly, the D3D11_Viewport is created so the render viewport is set to the

entire window.

4.2. DIRECTX 12

For DirectX12, the DXGIFactory212 is first initialized with the D3D12Device15 afterwards. However, before creating

our swap chain, there are several other things that need to be initialized: the Command Queue16, Descriptor

Heaps17 Command Allocator16, Command List16 and Fence18. These are explained in more detail below. The

Command List16 is left open for now, as it is needed for initialization of the buffers in the DirectX 12 game class.

The swap chain is created as well as the render target views for each of the back buffers. The depth buffer is

created as a Resource19 with a default heap type, as a 2D resource.

 The Command Queue and Command List16 were created with the goals of enabling reuse of rendering work and of

multi-threaded scaling. This differs from previous versions of DirectX in three ways. First, elimination of immediate

context, enabling multithreading. Second, the application now owns how rendering calls are grouped into GPU

work items, as it can now re-use items to save on performance. Last, the application now controls exactly when

items are submitted to the GPU, enabling the first two items. To execute work on the GPU, the app must explicitly

submit a command list to a command queue associated with the Direct3D device. Several commands can be

pushed to the queue before it is executed and can also be reused in this way. But the application is responsible for

ensuring that the direct command list has finished executing on the GPU before submitting it again.

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 8/17

The Descriptor Heap17 contains object that aren’t part of a Pipeline State Object (PSO), such as Shader Resource

Views (SRV) and Constant Buffer Views (CBV) as well as Render Target View (RTV) and Depth Stencil View (DSV) as

they are used in the app. They encompass the bulk of memory allocation required for storing the descriptor

specifications of object types that shaders reference for as large of a window of rendering as possible. They mirror

what most GPU hardware does and can therefore only be immediately edited on the CPU.

A Fence18 is an object used to synchronize the CPU and one or more GPUs.

In DirectX 12 the explicit Texture2D, RenderTargetView, DepthStencilView, etc no longer exist. Instead, they are

replaced with Resource Barriers20. Resource Barriers move the responsibility of per-resource state management

from the graphics driver to the app. In DirectX 11, drivers tracked this state in the background, which significantly

complicates any sort of multi-threaded design and is expensive on the CPU as well. This way, a texture resource

can be accessed as Shader Resource View or Render Target View.

5. CLASS INITIALIZATION

As the project needs to be able to switch between DirectX 11 and DirectX 12 on-the-fly, an abstract base class

containing all the necessary functions was defined. This class was then inherited from twice: once for a DirectX 11

version and once for a DirectX 12 version (which were named accordingly).

Inside the constructor for both classes the Device Resources are created, then, from the environment the class is

constructed in, the Initialize function is called. Here, the Device Resources as well as some other objects that

manage class resources are initialized.

Both classes have an array of custom Instance objects, and two arrays of XMVECTOR for rotation and velocities.

The Instance struct contains two XMFLOAT4 variables, one for rotation, and one for position and scale. Their use

will be described in a later section.

5.1. DIRECTX 11

The DirectX 11 version has six buffers: a vertex buffer, index buffer, instance buffer, color buffer, vertex constant

buffer and pixel constant buffer. It also has ID3D11InputLayout21, ID3D11VertexShader and ID3D11PixelShader

objects. In the CreateDeviceDependentResources function, the input layout is described, and the vertex and pixel

shaders are read from their CSO files22 (Compiled Shader Object). Shaders will be covered in more detail in a later

section. Subsequently, data is read from the OBJ file and written into buffers. Vertex information is written into the

vertex buffer, index information is written into index buffer (every vertex in the buffer is unique). The instance

buffer is initialized with a nullptr, and the color buffer is initialized with random colors. Next, the two constant

buffers are initialized for the vertex shader and pixel shader. All the other arrays get initialized as empty, at

maximum capacity.

5.2. DIRECTX 12

The DirectX 12 version is quite a bit different in setup. It has two vertex buffers, two index buffers, two color

buffers and 1 instance buffer. Information such as the location of the mapped instance data, the virtual GPU

address of the instance buffer, and details about three Vertex Buffer Views23 and one Index Buffer View23 are also

stored. The class also has a Fence object and a FenceEvent object. The Root Signature24 and Pipeline State25 are

also stored as well as a Graphics Memory object (defined in DirectXTK). After initialization of the Device Resources,

the Root Signature24 is initialized. Then, the compiled vertex and pixel shaders are read, the input layout is defined,

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 9/17

and put into a Pipeline State Object25 (PSO). The Root Sisgnature is assigned to the PSO, as well as the data read

from the vertex and pixel shaders, along with a wide array of other information. Next, just like in the DirectX 11

version, the data read from the OBJ file is written to the buffers, but the way this is done, is quite different. In

DirectX 12, buffers are replaced by Resources, and have states that can be manually transitioned between by the

application. To initialize buffers with the correct data in an efficient way, two buffers are needed: the buffer that

will be sent to the GPU and an upload buffer26. Data is read into the upload buffer, and then copied to the actual

buffer. This is done for the vertex buffer, index buffer and color buffer. For the instance buffer, map27 is used to

map a local variable to the buffer, so we can write modified instance data to the buffer. This is done to improve

performance, as while it is possible to use only one upload buffer instead of two, this is not ideal as the data would

need to be copied to the GPU every time it needs it. Without this optimization, the application had sub-par

performance. The Buffer Views23 are also initialized with the virtual GPU address of the buffer, size of the stride

(one entry in the buffer), and the full size of the buffer. Afterwards, the Command List16 is closed and executed, so

the data is pushed onto the GPU.

The Root Signature24 links command lists to the resources shaders require. As the application only uses one shader,

only one Root Signature is necessary. It is possible to reuse the same Root Signature for different PSOs in the same

way command lists are reusable. It defines the access a shader has to certain pipeline stages. In this project, access

to the hull, domain and geometry shaders is denied in this way. The two constant buffers are also defined as such,

one being visible28,29 to the vertex shader, the other to the pixel shader.

The 2-buffer pattern consists of two buffers with two Resource Barriers: one that has default heap type30, and

D3D12_RESOURCE_STATE_COPY_DEST and another with an upload heap type and

D3D12_RESOURCE_STATE_GENERIC_READ. The former is the buffer that gets pushed to the GPU, and the latter is

the upload buffer used as an intermediary to copy data onto the actual buffer. Once the Resources are created, the

object data is put into a D3D12_SUBRESOURCE_DATA object, copied into the upload buffer and then copied onto

the actual buffer. Then the actual buffer’s D3D12_RESOURCE_STATE_COPY_DEST state is set to transition to

D3D12_RESOURCE_STATE_INDEX_BUFFER or D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER.

6. GAME LOOP

The project uses a normal Update-Render game loop, as provided in the used template.

In the game class’ Tick function, the Update and Render functions are executed.

The Update function updates all currently rendered instances based on their velocity, and reflects them when they

reach the border, so they don’t fly away too far. In DirectX 11, the instance and constant buffer data are updated

here. In DirectX 12 this happens later.

The Render function has quite a bit of differences as it uses the respective graphics APIs more than in the Update

function. First, the back buffers are cleared, to ensure that no data from previous frames will be shown again. This

happens in the Clear function.

6.1. DIRECTX 11

In DirectX 11, the Render Target View and Depth Stencil View are cleared, the Render Target is set, together with

the Viewport31. When the back buffers are cleared, the GPU is prepared to render to upcoming frame. The Input

Layout21 is created, the Primitive Topology32 is set to D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, and the vertex

buffers are initialized. Next, an array of ID3D11Buffer pointers is created with the vertex buffer, instance buffer

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 10/17

and color buffer. With a call to IASetVertexBuffers33 the three vertex buffers are set at once. Then, with

IASetIndexBuffer34 the index buffer and format of the index buffer are set. The constant buffers and shaders are set

next. When everything is configured, a call to DrawIndexedInstanced 35 draws all instances. Then, Present is called

to render the new frame.

6.2. DIRECTX 12

In DirectX 12, before the back buffer is cleared, the fence is checked to see if the GPU is keeping up with the CPU36.

After executing everything that was on a command queue, the fence signal is incremented (this would happen at

the end of the Render function). This function is a nonblocking operation, so when executing it, the fence value

might not get changed immediately. If the GPU has not caught up yet, the program waits for a single frame. If the

GPU and CPU are in sync, the command list is prepared to render a new frame by resetting the command list as

well as the allocator and changing the Resource Barrier from D3D12_RESOURCE_STATE_PRESENT to

D3D12_RESOURCE_STATE_RENDER_TARGET. The back buffers are then cleared. There is not much different here

when compared to DirectX 11. After setting the Root Signature and Pipeline State, the constant buffers are

configured using DirectX ToolKit helper functions to copy data from the buffers using memcpy. Additionally, the

Primitive Topology is set. Then, the 2nd vertex buffer is created (initialization of the instance buffer was skipped in

the Game class’ CreateDeviceResources function) by copying the instances to the address we earlier mapped out

instance data to. With IASetVertexBuffers37 the vertex buffers are sent to the GPU using the Vertex Buffer Views23.

In DirectX 12 however, the stride information, size (and format for the Index Buffer View23) are stored inside a

Buffer View struct, so there is no longer any need to pass that information along to the function directly, like it is

with DirectX 11. After setting the Index and Vertex buffers, the scene is set to draw with a call to

DrawIndexedInstanced 38, similar to DirectX 11. Before we return from the Render function, the Command List is

closed, executed, and the scene is drawn.

7. GPU INSTANCING

Rendering a mesh multiple times is straightforward, as detailed above. This section provides a more detailed

description on the shader configuration for this project.

In the D3D11_INPUT_ELEMENT_DESC and D3D12_INPUT_ELEMENT_DESC, certain entries in the input layout are

reserved for the instance. From the OBJ file, vertex position and normal are read, which each have their own entry

in the input layout. The other three entries are ones that can only be filled in by the instance themselves: rotation,

position & scale, and color. They are easily distinguishable by their INPUT_CLASSIFICATION39. The

INPUT_CLASSIFICATION describes if the data in the input is per-vertex data (data that is read from the vertex

buffer), or per-instance data (data read from the instance buffer).

So, to properly construct an instanced vertex, it needs two separate inputs, which are unrelated to one another:

the original data, and the modified data. Hence, the need for (at least) two vertex buffers, one for vertex data, and

one for the instance data.

8. SHADERS

The shader language used for the shaders is HLSL40. Creating a shader in Visual Studio is not difficult, as it has built-

in functions for it. The shader code was taken from the XBoxUWPSamples, the same project this project’s code is

based off. The shader code read in the CreateDeviceDependentResources function in the Game class isn’t read

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 11/17

from the HLSL file, however, but from a CSO file. By including the shader in the project, when building the solution,

the shaders automatically get compiled together with it, eliminating shader runtime compilation stutter.

9. PERFORMANCE COMPARISON

The previous section details the architectural differences, while this section will delve deeper into the actual

performance differential between DirectX 11 and DirectX 12.

Figure 3. Chart showing FPS over time

Figure 4. Chart showing FPS by instance count

0

2

4

6

8

10

12

14

16

To
ta

l t
im

e 1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4 0 1 2 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4

FPS over time
 FPS

0

2

4

6

8

10

12

14

16

 In
st

an
ce

s
2

0
0

2
0

0
2

0
0

2
0

0
4

0
0

4
0

0
4

0
0

4
0

0
4

0
0

4
0

0
4

0
0

6
0

0
1

3
0

0
1

3
0

0
2

0
0

2
0

0
2

0
0

2
0

0
2

0
0

8
0

0
8

0
0

8
0

0
8

0
0

8
0

0
8

0
0

8
0

0
8

0
0

8
0

0

FPS by instance count
 FPS

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 12/17

The first graph details the FPS count (frames per second) on the y-axis, and the elapsed time for both DirectX 11

and 12 (0 to 14 seconds) on the x-axis. The second graph shows FPS count with the number of instances rendered

at that time. The dip in framerate at the 13-14 second mark is due to switching between APIs. The graphs show

there isn’t really a difference in performance between the two versions. This means there is no inherent difference

between the two versions of the graphics API, and any optimization needs to be implemented by the user.

DISCUSSION

While the changes between DirectX 11 and DirectX 12 are numerous, there are clear parallels between each step

of the render pipeline. Generally, what takes a single step in DirectX 11 takes quite a bit more work to achieve the

same result, facilitating side-by-side comparisons. The low-level nature of DirectX 12 raises the barrier of entry

quite a lot for people looking to learn DirectX. The command list, descriptors, and PSOs are complicated to

understand. However, using DirectX 11 can provide the same result in a simpler and more direct way. Low-level

languages like this provide more control over how things are done, but also increases the potential for errors.

This project’s usage of DirectX 12 does not compare to the way modern-day AAA games would utilize it. Therefore,

it is not possible to determine what the biggest performance detriment is in video games. D3D11On12 might

provide an interesting middle-ground when looking to port a graphics engine from DirectX 11 to DirectX 12, as

Microsoft provides a guide on porting to DirectX 1241.

This project is also quite unoptimized. It is single threaded, has an unoptimized index buffer and no memory

management. The DirectX 12 scene uses around twice as much memory as the DirectX 11 version, and all mesh

vertexes in the vertex/index buffers are unique, which further increases memory usage. This is not an optimal

solution for eliminating runtime shader compilation stutter.

The implementation of pre-compiled shaders in this project is not optimal either. Because every computer’s

hardware configuration is different, shaders have to be compiled for each computer a game runs on. A rebuild of

this project is required after deleting the CSO files to make them work on different hardware.

FUTURE WORK

This project uses basic rasterization functions and doesn’t make use of many of the new features implemented in

DirectX 12.

The Command List/Queue introduced in DirectX 12 allow for multithreading, something that is difficult to do in

DirectX 11. The project currently uses no multithreading, so adding this would certainly improve performance. This

optimization would be heavily based on Microsoft’s own multithreading sample42.

Memory management43 could also be introduced in the DirectX 12 scene.

As mentioned above, this project’s implementation of PSO’s is suboptimal, so looking into a way to make shaders

compile on first startup would help eliminate runtime shader compilation stutter22.

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 13/17

A basic scene manager could also be introduced to increase the flexibility of the overall scene and necessitate a

material/texture load system.

Other optimizations could be inspired by Microsoft’s MiniEngine graphics engine44.

BIBLIOGRAPHY

1: Important Changes from Direct3D 11 to Direct3D 12 - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d12/important-changes-from-directx-11-to-directx-

12#porting-from-direct3d-11

2: Getting Started · microsoft/DirectXTK Wiki. (n.d.). Retrieved from

https://github.com/Microsoft/DirectXTK/wiki/Getting-Started

3: Getting Started · Microsoft/DirectXTK12 Wiki · GitHub. (n.d.). Retrieved from

https://github.com/microsoft/DirectXTK12/wiki/Getting-Started

4: DirectX Visual Studio Templates Wiki · GitHub. (n.d.). Retrieved from https://github.com/walbourn/directx-vs-

templates/wiki

5: Using System-Generated Values - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-input-

assembler-stage-using#instanceid

6: C++ - Instancing with Directx11 - Game Development Stack Exchange. (n.d.). Retrieved from

https://gamedev.stackexchange.com/questions/170192/instancing-with-directx11

7: Direct3D 11 on 12 - Win32 apps | Microsoft Learn. (n.d.). Retrieved from https://learn.microsoft.com/en-

us/windows/win32/direct3d12/direct3d-11-on-12

8: Xbox-ATG-Samples/UWPSamples/IntroGraphics at main · microsoft/Xbox-ATG-Samples. (n.d.). Retrieved from

https://github.com/microsoft/Xbox-ATG-Samples/tree/main/UWPSamples/IntroGraphics

9: The Stanford 3D Scanning Repository. (n.d.). Retrieved from http://graphics.stanford.edu/data/3Dscanrep/

10: DirectX - ComPtr vs. C++ shared_ptr. (n.d.). Retrieved from

https://social.msdn.microsoft.com/Forums/SqlServer/en-US/5a376d34-f74b-4594-b87f-d070a3e00199/directx-

comptr-vs-c-sharedptr?forum=windowsgeneraldevelopmentissues

11: ComPtr Class | Microsoft Learn. (n.d.). Retrieved from https://learn.microsoft.com/en-

us/cpp/cppcx/wrl/comptr-class?view=msvc-170

12: IDXGIFactory2 (dxgi1_2.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/dxgi1_2/nn-dxgi1_2-idxgifactory2

13: ID3D11Device1 (d3d11_1.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d11_1/nn-d3d11_1-id3d11device1

https://learn.microsoft.com/en-us/windows/win32/direct3d12/important-changes-from-directx-11-to-directx-12#porting-from-direct3d-11
https://learn.microsoft.com/en-us/windows/win32/direct3d12/important-changes-from-directx-11-to-directx-12#porting-from-direct3d-11
https://github.com/Microsoft/DirectXTK/wiki/Getting-Started
https://github.com/microsoft/DirectXTK12/wiki/Getting-Started
https://github.com/walbourn/directx-vs-templates/wiki
https://github.com/walbourn/directx-vs-templates/wiki
https://learn.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-input-assembler-stage-using#instanceid
https://learn.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-input-assembler-stage-using#instanceid
https://gamedev.stackexchange.com/questions/170192/instancing-with-directx11
https://learn.microsoft.com/en-us/windows/win32/direct3d12/direct3d-11-on-12
https://learn.microsoft.com/en-us/windows/win32/direct3d12/direct3d-11-on-12
https://github.com/microsoft/Xbox-ATG-Samples/tree/main/UWPSamples/IntroGraphics
http://graphics.stanford.edu/data/3Dscanrep/
https://social.msdn.microsoft.com/Forums/SqlServer/en-US/5a376d34-f74b-4594-b87f-d070a3e00199/directx-comptr-vs-c-sharedptr?forum=windowsgeneraldevelopmentissues
https://social.msdn.microsoft.com/Forums/SqlServer/en-US/5a376d34-f74b-4594-b87f-d070a3e00199/directx-comptr-vs-c-sharedptr?forum=windowsgeneraldevelopmentissues
https://learn.microsoft.com/en-us/cpp/cppcx/wrl/comptr-class?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cppcx/wrl/comptr-class?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/api/dxgi1_2/nn-dxgi1_2-idxgifactory2
https://learn.microsoft.com/en-us/windows/win32/api/d3d11_1/nn-d3d11_1-id3d11device1

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 14/17

14: ID3D11DeviceContext1 (d3d11_1.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d11_1/nn-d3d11_1-id3d11devicecontext1

15: ID3D12Device (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from https://learn.microsoft.com/en-

us/windows/win32/api/d3d12/nn-d3d12-id3d12device

16: Design Philosophy of Command Queues and Command Lists - Win32 apps | Microsoft Learn. (n.d.). Retrieved

from https://learn.microsoft.com/en-us/windows/win32/direct3d12/design-philosophy-of-command-queues-and-

command-lists

17: Descriptor Heaps Overview - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d12/descriptor-heaps-overview

18: ID3D12Fence (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from https://learn.microsoft.com/en-

us/windows/win32/api/d3d12/nn-d3d12-id3d12fence

19: ID3D12Resource (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nn-d3d12-id3d12resource

20: Using Resource Barriers to Synchronize Resource States in Direct3D 12 - Win32 apps | Microsoft Learn. (n.d.).

Retrieved from https://learn.microsoft.com/en-us/windows/win32/direct3d12/using-resource-barriers-to-

synchronize-resource-states-in-direct3d-12

21: ID3D11InputLayout (d3d11.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nn-d3d11-id3d11inputlayout

22: Compiling Shaders - Win32 apps | Microsoft Learn. (n.d.). Retrieved from https://learn.microsoft.com/en-

us/windows/win32/direct3dhlsl/dx-graphics-hlsl-part1

23: Resource binding overview - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d12/resource-binding-flow-of-control

24: Root Signatures Overview - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d12/root-signatures-overview

25: Managing Graphics Pipeline State in Direct3D 12 - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d12/managing-graphics-pipeline-state-in-direct3d-12

26: Using Resource Barriers to Synchronize Resource States in Direct3D 12 - Win32 apps | Microsoft Learn. (n.d.).

Retrieved from https://learn.microsoft.com/en-us/windows/win32/direct3d12/using-resource-barriers-to-

synchronize-resource-states-in-direct3d-12

27: ID3D12Resource::Map (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12resource-map

28: CD3DX12_ROOT_PARAMETER structure (D3dx12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d12/cd3dx12-root-parameter

29: D3D12_SHADER_VISIBILITY (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_shader_visibility

https://learn.microsoft.com/en-us/windows/win32/api/d3d11_1/nn-d3d11_1-id3d11devicecontext1
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nn-d3d12-id3d12device
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nn-d3d12-id3d12device
https://learn.microsoft.com/en-us/windows/win32/direct3d12/design-philosophy-of-command-queues-and-command-lists
https://learn.microsoft.com/en-us/windows/win32/direct3d12/design-philosophy-of-command-queues-and-command-lists
https://learn.microsoft.com/en-us/windows/win32/direct3d12/descriptor-heaps-overview
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nn-d3d12-id3d12fence
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nn-d3d12-id3d12fence
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nn-d3d12-id3d12resource
https://learn.microsoft.com/en-us/windows/win32/direct3d12/using-resource-barriers-to-synchronize-resource-states-in-direct3d-12
https://learn.microsoft.com/en-us/windows/win32/direct3d12/using-resource-barriers-to-synchronize-resource-states-in-direct3d-12
https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nn-d3d11-id3d11inputlayout
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-part1
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-part1
https://learn.microsoft.com/en-us/windows/win32/direct3d12/resource-binding-flow-of-control
https://learn.microsoft.com/en-us/windows/win32/direct3d12/root-signatures-overview
https://learn.microsoft.com/en-us/windows/win32/direct3d12/managing-graphics-pipeline-state-in-direct3d-12
https://learn.microsoft.com/en-us/windows/win32/direct3d12/using-resource-barriers-to-synchronize-resource-states-in-direct3d-12
https://learn.microsoft.com/en-us/windows/win32/direct3d12/using-resource-barriers-to-synchronize-resource-states-in-direct3d-12
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12resource-map
https://learn.microsoft.com/en-us/windows/win32/direct3d12/cd3dx12-root-parameter
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_shader_visibility

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 15/17

30: D3D12_HEAP_TYPE (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_heap_type

31: D3D11_VIEWPORT (d3d11.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d11/ns-d3d11-d3d11_viewport

32: Primitive Topologies - Win32 apps | Microsoft Learn. (n.d.). Retrieved from https://learn.microsoft.com/en-

us/windows/win32/direct3d11/d3d10-graphics-programming-guide-primitive-topologies

33: ID3D11DeviceContext::IASetVertexBuffers (d3d11.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-iasetvertexbuffers

34: ID3D11DeviceContext::IASetIndexBuffer (d3d11.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-iasetindexbuffer

35: ID3D11DeviceContext::IASetIndexBuffer (d3d11.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-iasetindexbuffer

36: ID3D11DeviceContext::DrawIndexedInstanced (d3d11.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-

drawindexedinstanced

37: ID3D12GraphicsCommandList::IASetVertexBuffers (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved

from https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12graphicscommandlist-

iasetvertexbuffers

38: ID3D12GraphicsCommandList::DrawIndexedInstanced (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.).

Retrieved from https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-

id3d12graphicscommandlist-drawindexedinstanced

39: D3D12_INPUT_ELEMENT_DESC (d3d12.h) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/api/d3d12/ns-d3d12-d3d12_input_element_desc

40: High-level shader language (HLSL) - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl

41: Porting from Direct3D 11 to Direct3D 12 - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d12/porting-from-direct3d-11-to-direct3d-

12#submitting-work-to-the-gpu

42: Direct3D 12 multithreading sample - Code Samples | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/samples/microsoft/directx-graphics-samples/d3d12-multithreading-sample-

win32/

43: Memory Management in Direct3D 12 - Win32 apps | Microsoft Learn. (n.d.). Retrieved from

https://learn.microsoft.com/en-us/windows/win32/direct3d12/memory-management

44: microsoft/DirectX-Graphics-Samples: This repo contains the DirectX Graphics samples that demonstrate how to

build graphics intensive applications on Windows. (n.d.). Retrieved from https://github.com/microsoft/DirectX-

Graphics-Samples

https://learn.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_heap_type
https://learn.microsoft.com/en-us/windows/win32/api/d3d11/ns-d3d11-d3d11_viewport
https://learn.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-primitive-topologies
https://learn.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-primitive-topologies
https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-iasetvertexbuffers
https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-iasetindexbuffer
https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-iasetindexbuffer
https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-drawindexedinstanced
https://learn.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-drawindexedinstanced
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12graphicscommandlist-iasetvertexbuffers
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12graphicscommandlist-iasetvertexbuffers
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12graphicscommandlist-drawindexedinstanced
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12graphicscommandlist-drawindexedinstanced
https://learn.microsoft.com/en-us/windows/win32/api/d3d12/ns-d3d12-d3d12_input_element_desc
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3d12/porting-from-direct3d-11-to-direct3d-12#submitting-work-to-the-gpu
https://learn.microsoft.com/en-us/windows/win32/direct3d12/porting-from-direct3d-11-to-direct3d-12#submitting-work-to-the-gpu
https://learn.microsoft.com/en-us/samples/microsoft/directx-graphics-samples/d3d12-multithreading-sample-win32/
https://learn.microsoft.com/en-us/samples/microsoft/directx-graphics-samples/d3d12-multithreading-sample-win32/
https://learn.microsoft.com/en-us/windows/win32/direct3d12/memory-management
https://github.com/microsoft/DirectX-Graphics-Samples
https://github.com/microsoft/DirectX-Graphics-Samples

Vincent Van Denberghe

DAE - Graduation Work 2022-2023 16/17

APPENDICES

You can find my project code on GitHub, linked here: https://github.com/Vincent-VD/DX11vDX12

Parts of this paper were written with help of ChatGPT: https://openai.com/blog/chatgpt/

https://github.com/Vincent-VD/DX11vDX12
https://openai.com/blog/chatgpt/

